

Summary

Intense use of nitrogen (N) in the agricultural sector has caused various environmental problems. Despite effective national policy measures, initiated in the mid 80es, these problems such as eutrophication of terrestrial and aquatic ecosystems and groundwater reservoirs persist. Environmental

N-sensitivity is not equally distributes across the Danish landscape. This is mainly due to spatial variation in local environmental characteristics, N retention of the soil from source to recipient, and existing pollution in the recipient.

The Danish water management plans has described one coastal N reduction goal (NRG) for each of the 90 coastal catchments in Denmark. This enables development of new methods using targeted solutions to define which areas - in this case the so called Id15 catchments - could be taken out of production (converted to forest or permanent grassland) and thereby only leach 12 kg N/ha/yr to reach coastal NRG.

#### Aims

- Exemplify a simple regionalized targeted method to select suitable catchments for conversion to reach the coastal nitrogen reduction goals (NRG).
- Define most suitable areas for conversion - hotspots (this will not meet the NRG).
- Give recommendations on how to prioritize land conversion.

# Regionalized targeted catchment selection

A method was developed to detect high priority areas for land conversion within each coastal catchment depending on 3 local priority attributes: 1) coastal N load (NLoad),2) naturalness (Nat), and 3) field land rent (LRent) (Fig. 1a), and 4 scenario priority attributes: 1) equal weighted scenario (Equal), 2) greening and protection of aquatic environments (GreenEnvi), 3) terrestrial ecosystems biodiversity improvement

(TerreEco), and 4) agro-based bioeconomy (AgronEcon) (Fig. 1a). Each priority attribute was sorted (Fig. 1b) and used for stepwise selection of the most suitable Id15's for conversion until the NRG was fulfilled (Fig. 1c) - high NLoad, high Nat or low LRent were given highest priority. Area characteristics were compared for each priority attribute, and areas most suitable for land conversion were detected - hotspots (Fig. 1d).



## **Results**

Total area and hotspots, using the different priority attributes for Id15 catchment selection, show varying spatial distributions (Fig. 2), and varying area characteristics (Table 1). Hotspots where Nload, Nat, and LRent are equally taken into consideration are primary areas to initiate land conversion if not all recommended should be converted (Fig. 3). Selection based on GreenEnvi has the lowest cost followed by NLoad, but a larger area should be converted using GreenEnvi compared to NLoad (Table 1).



Table 1.

|                       |           |                              | Farm type (1000 Ha) |                     |                        |             | _            | Ton                       |                                     |                                | Sum             |               |                  |  |
|-----------------------|-----------|------------------------------|---------------------|---------------------|------------------------|-------------|--------------|---------------------------|-------------------------------------|--------------------------------|-----------------|---------------|------------------|--|
| Priority<br>attribute | #Id1<br>5 | Farm<br>area<br>(1000<br>Ha) | Crop<br>s           | Dairy<br>cattl<br>e | Grazing<br>animal<br>s | Pig<br>farm | Nload<br>now | Nload<br>convers<br>- ion | Nload<br>red. of<br>convers-<br>ion | Land<br>rent<br>(mill.<br>Kr.) | Wilder-<br>ness | Bio-<br>score | Natural<br>-ness |  |
| Nload                 | 597       | 622                          | 254                 | 150                 | 19                     | 148         | 15405        | 2970                      | 12435                               | 2588                           | 82109           | 576           | 322              |  |
| Nat                   | 1194      | 976                          | 413                 | 243                 | 37                     | 198         | 15229        | 3022                      | 12207                               | 3682                           | 193237          | 2864          | 758              |  |
| Lrent                 | 1320      | 987                          | 455                 | 217                 | 41                     | 182         | 15339        | 3052                      | 12287                               | 3213                           | 192238          | 3077          | 755              |  |
| Equal                 | 940       | 777                          | 338                 | 187                 | 31                     | 150         | 15276        | 3006                      | 12270                               | 2751                           | 148102          | 2195          | 581              |  |
| GreenEnvi             | 699       | 674                          | 290                 | 163                 | 24                     | 140         | 15267        | 2974                      | 12293                               | 2531                           | 103980          | 990           | 408              |  |
| TerreEco              | 1046      | 842                          | 363                 | 206                 | 33                     | 165         | 15246        | 3004                      | 12242                               | 3037                           | 168377          | 2642          | 661              |  |
| AgroEcon              | 1068      | 823                          | 371                 | 192                 | 33                     | 153         | 15181        | 2982                      | 12199                               | 2768                           | 165287          | 2698          | 649              |  |

### **Hotspot selection**

- Converted land range from 23-37% of the farm area. These numbers are too high for realistic management planning (Table 1).
- We have defined hotspots that illustrate the most suitable areas for each priority attribute (Fig. 2) as well as for NLoad, Nat, and LRent combined (Fig. 3).

### Future recommendations

- Using an economic perspective we recommend the GreenEnvi scenario (where also Nat and LRent is considered) which has the lowest cost (Table 1).
- The tradeoff is that GreenEnvi needs more land to reach the NRG compared to e.g. using the priority attribute NLoad.
- Other perspectives can be considered.

### More information

Mette Vestergaard Odgaard mette.vestergaardodgaard@agro.au.dk

Christen Duus Børgesen christen.borgesen@agro.au.dk

Tommy Dalgaard tommy.dalgaard@agro.au.dk

Jørgen Eivind Olesen j<u>eo@agro.au.dk</u>



InnovationsFonden Forskning, teknologi & vækst i danmark